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One-loop mean-field theory for lattice Abelian Higgs model 

D Pertermann 
Sektion Physik, Karl-Marx-Universitat Leipzig, DDR 

Received 12 October 1984 

Abstract. We consider the lattice Abelian Higgs model with frozen radial degrees of freedom 
using the mean-field approximation with one-loop corrections. In the weak-coupling region 
the behaviour of the frequencies arising in the expansion of the action allows the Higgs 
and Coulomb phases to be distinguished. Analytical results are presented for all phase 
transition lines. The phase structure obtained is in qualitative agreement with Monte Carlo 
calculations for Higgs charges q = 1, 2 and 6. 

1. Introduction 

The mean-field theory including corrections (Drouffe 1980, Brezin and Drouffe 1982, 
Drouffe and Zuber 1983) can be considered as the natural weak-coupling perturbation 
theory for lattice gauge theories. Using the mean-field technique for a determination 
of the phase structure of the lattice Abelian Higgs model we find that the tree 
approximation does not reproduce the phase structure predicted from Monte Carlo 
simulations (Ranft et a1 1983). In particular, working without gauge-fixing for a Higgs 
charge q = 1 no analytical connection between confinement and Higgs phases appears 
and for q = 6 the Coulomb phase is absent for increasing Higgs coupling. 

It was shown by Drouffe (1980) that the lowest-order mean-field equations corre- 
spond to a saddle-point approximation which allows the calculation of loop corrections 
(Brezin et af 1976). It has also been proved that the mean-field approach can be 
reconciled with Elitzur’s theorem (1975) in this way. An improvement of the precision 
of the mean-field calculations can be achieved including corrections beyond the 
one-loop approximation (Flyvbjerg et a1 1983, Flyvbjerg 1984). However, the one-loop 
corrections have been successfully applied to several models (see, for instance, Alessan- 
drini et a1 1982, Alberty et a1 1983, Alessandrini 1983, Alessandrini and Boucaud 1983, 
Dagotto 1983, Trinchero 1983, Boucard 1984). Therefore it should be sufficient to 
include only one-loop corrections for a reproduction of the true phase structure. 

We have determined the phase structure of the lattice Abelian Higgs model using 
the mean-field approximation on the one-loop level. Considering different Higgs 
charges q = 1, 2 and 6 we obtain qualitative agreement with Monte Carlo calculations 
(Ranft et a1 1983). Furthermore we present analytical approximations for all phase 
transition lines. 
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2. The effective action for the lattice Abelian Higgs model 

The theory is defined in a d-dimensional lattice of N sites. The partition function is 
given by 

Z(P, K )  = 5,,,, d A U 1  dtc[aI exp( P c Up+ K c ( U U 4 C ) L  . 
plaquettes Links ) 

Z(P, K )  = 5 

(2.1) 

The U, = exp(iOL) are the link variables of the gauge fields and a, = exp(iX,) the site 
variables of the Higgs matter fields for frozen radial modes. The O L  and x, are angle 
variables. The power q is the Higgs charge. We rewrite the partition function using 
the standard procedure (Brezin and Drouffe 1982) and obtain 

dB, dB: dAL dA*, n   CL ~ W L  l ldHX (47r)2 l l dvL  L (4rI)2 L complex plane X 

(2.2) 
x s ( C + 2 i ~ H H * ) 6 (  W- Vq) exp(Seff). 

After the integration the auxiliary fields CL and WL satisfy 

C, = -i2~H,Hz+, w,= v; (2.3) 

where IJ. is a lattice unit vector and L= (x, p ) .  The effective action Sen is defined by 

Se* = P c Vp + K 1 ( H W H ) , + z  [ -$(A*, VL+ C*, WL+cc)  
P L L 

(2.4) 
+lnfp’(A,  C ) ] + c  [ -$(B:H,+cc)+lnf,(B)]. 

X 

The one-link integral f p )  (A, C) and the one-site integral f x (  B) are 

The CL integration leads to a cancalation of the K(HWH)L terms and the (CLWL) 
contributions in the effective action. Then Sefi depends on H, only via the one-link 
integral and the (B,H,) terms. We call VL and H, the effective gauge and Higgs fields 
respectively. 

3. The mean-field approximation including corrections 

In the tree approximation one performs a saddle-point evaluation of equation (2.2). 
Looking for translationary invariant solutions ( VL, H,, AL, B,) = (m, M, -iZ1, -iZ3) 
and fixing the gauge so that m, M, Z1, Z3 are real numbers we obtain the following 
saddle-point equations 

m = ( d / d Z l )  lnf?’(AL= 4 Z I ,  CL = 4 2 2 )  = (d/8Zl) lnf‘q’(Zl,  Z,) 

M = (d/dZ3) lnf,(Bx = 4Z3) = (d/dz,) In ZO(z3) (3.1) 
Z1 = 4pm3 Z, = ~ K M ,  Z, = 4 d ~ m ‘ M  p = p ( d  - 1) 
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where I , (Z)  are modified Bessel functions. There are three types of leading solutions 
( m ,  M )  of equation (3.1). For each of them we calculate the free energy per link, fo. 
On the level of the tree approximation we relate the three types of solutions to the 
phases of the model. A crossing of the free energies is interpreted as phase transition. 
The mean values ( m ,  M ) ,  the free energies fo and the corresponding phases are: 

(1 - g o )  1 

f 7"L 0 
confinement phase (strong coupling) 

fcoou'= - p m 4 + ~ , m - l n  lo(Z1) 

Coulomb phase (weak coupling, /? large, K small) 
(3.2) 

1 1 --) 1 f y i g g s =  - p m 4 + z 1 m  -lnf '4 '(Zl,  z,) 
+ ( 1 / d [ z3 M - In Io( z, ) ]_ ( l - 8 p + 4 q 2 ~ '  8 d K  

Higgs phase (weak coupling, p large, K large). 

The non-trivial mean values m and M are approximations. Ranft et al (1983) have 
predicted that the Higgs mean value M ( K )  vanishes in a square-root-type fashion 
going from the Higgs to the Coulomb phases. The approximation (3.2) seems to be 
in contradiction to this, but in fact, this is not so (see appendix 2 ) .  

If the gauge is not fixed the non-trivial saddle-points are degenerated. For a 
determination of the phase structure on the tree level, however, we can use the mean 
values (3.1) due to the invariance of the free energies fo. Recently it was shown 
(Flyvbjerg et a1 1983, Flyvbjerg 1984) that the axial gauge gives very good results using 
the mean-field technique. However, our model has a Coulomb phase characterised 
by a U ( l )  gauge symmetry. In this case the theorem of Elitzur (1975) predicts a 
vanishing expectation value for the fields. To reconcile the mean-field approach with 
this prediction one needs to include the gauge degrees of freedom. Therefore we follow 
Alessandrini et a1 (1982) using collective coordinate methods (Gervais and Sakita 
1975, Polyakov 1977) and consider the gauge degrees of freedom calculating the 
one-loop corrections. 

To improve the tree approximation we perform a loop expansion around the saddle 
points. Considering small quantum fluctuations 

VL = m + A L  + itL 

H, = M + cy, + i y, 

A,=- iZl+XL+iYL 

B, = -iZ3 + n, + iP, 
(3.3) 

we expand the effective action in terms of these fluctuations up to the second order 
(linear terms vanish). We calculate the corrections Af to the free energy f = f o + A f  
after integrating out the fluctuations in the partition function. 

For the trivial saddle point (0,O) this treatment gives the usual strong-coupling 
expansion. Considering only the zeroth order we obtain the following free-energy 
correction in the confinement phase 

AYconf= - / P / 2 d  -In 1 0 ( 2 K ) .  (3.4) 

The &dependent term is identical to the U( 1) result of Alessandrini et al (1982). The 
K-dependent term can be neglected if the first term dominates. However, when goes 
to zero and K is large enough this term dominates. As we see later, this gives the 
analytical connection between the Higgs and confinement phases for a Higgs charge 
9 = 1. 
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In the weak-coupling region we have to deal with the non-trivial saddle points 
( m ,  0) and ( m ,  M ) .  After performing the integration over the fluctuations of the external 
random fields AL and B, we transform the remaining fluctuations in the momentum 
space (x  + p )  and diagonalise the bilinear operators for the gauge-field fluctuations. 
The resulting action contains a real and imaginary mode for the Higgs fields. Further- 
more it contains (d  - 1 )  modes of a degenerate eigenfrequency and one mode which 
is non-degenerate in both the real and imaginary part of the gauge fluctuations. The 
imaginary mode of the Higgs field and the imaginary non-degenerate one of the gauge 
field belong to gauge degrees of freedom. The remaining modes can be integrated out 
in a unique way. The frequencies corresponding to the gauge degrees of freedom are, 
for the Higgs fields, 

and for the gauge fields 

where 

- 1 z, 

is the photon mass. The E, depend on f ' " ( Z , ,  Z2)  

E,, = 1 -(f '~ ')-1(a2/aZ~)f 'q '  i = 1,2  

E21 = q~,~,(1/Z2[f'4']-1(a/azi)f'4' - E 2 2 ) .  

Therefore the behaviour of frequencies is connected with the one-link integral. 
For saddle points ( m  f 0, M = 0 )  we find 

(3 .5b)  

(3.5c) 

(3.6) 

f'"=Z0(Z1) Z 2 = 0  and G I ( p ) = 0  A Y ( p ) > O .  (3 .7 )  

We remark that the AY correction to the free energy cancels with the remaining Higgs 
contributions up to a In 2 term in this case. The zero-frequency ; , ( p )  indicates a 
U(1) symmetry in the corresponding (D, K )  region (see equation (3.2)). We call this 
phase a static Coulomb phase, since the Higgs mean value is trivial ( M  = 0). 

In the case of ( m ,  M )  the one-link integral can be approximated by (Kasperkovitz 
1980) 

where 

(3.86) q2 1 t'q'(z,, 2,) = -+-. 
2z1 2 2 ,  

The sum in (3.8a) can be neglected if t'4' is large enough. Using l / d  as expansion 
parameter and considering at most l / d  terms we find as critical t ' 4 )  value 

t%',(Z,, Z2) =In d. (3.9) 
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From this we derive including equation (3.86) and 

z1 = 4 p  z2 == 2K 

the following relation between the critical couplings 

P c r i t  - 
K .= -  (Pcrit - q 2 / 8  In d)- ' .  

cnf 4 In d 
(3.10) 

In the case t ( q )  > In d the sum in equation ( 3 . 8 ~ )  is neglected and the frequencies are 

& r ( P ) = O  AY( p) = 0. (3.11) 

The zero frequencies indicate a U( 1) symmetry. The existence of a zero frequency for 
the Higgs field corresponds to the non-trivial Higgs mean value ( M  # 0). Therefore 
we call this region a dynamical Coulomb phase. 

If t ( 9 ) <  In d the sum in equation ( 3 . 8 ~ )  is essential. Using an approximation by 
a Gaussian integral for it we obtain 

( 3 . 1 2 ~ )  

(3.12b) 

Instead of zero frequencies we find frequencies of order O ( l / d ) .  Since the continuous 
gauge symmetry is broken we call the corresponding (p, K )  region a Higgs phase. The 
relation (3.10) between the critical couplings is interpreted as the phase transition line 
between the Coulomb and Higgs phases. If the sum in equation ( 3 . 8 ~ )  is included in 
a exact way the frequencies would be continuous functions of the couplings (p, K ) .  

First for increasing couplings they are flat with values near to zero. Then in the region 
of the critical couplings (p,,,,, K , , , ~ )  a drastic change in the behaviour can be observed. 
Finally, these frequencies rapidly increase if the couplings become larger and larger. 

The integration over the gauge degrees of freedom is Gaussian in the Higgs phase. 
In the Coulomb phase we use collective coordinate methods. Following Alessandrini 
et a1 (1982) we use for the gauge fields a background gauge condiiion 

(3.13) 

where tL are the imaginary gauge fluctuations. In the dynamical part we choose a 
global U( l )  symmetry for the Higgs fields 

x = o  v x  (3.14) 

yx denoting the imaginary Higgs fluctuations. The results for the free-energy corrections 
Af in the weak coupling region are collected in appendix 1. 

4. The phase structure of the lattice Abelian Higgs model 

We find two types of phase transitions in the model. The first type describes the 
transitions from strong to weak coupling. It corresponds to a jump in the mean values 
of the fields and a free-energy crossing. We determine the phase transition lines by 
the crossing of the free energies. First we compare the so-called effective free energies 
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containing all numerical significant terms coming from the zeroth-order free energy fo 
and the corrections AA 

(4.1) 

Then we correct the results for the couplings using the effective corrections Afeff 
following the method described by Alessandrini et a1 (1982). These effective corrections 
contain only those terms which are apparently proportional to l /d.  Assuming that the 
corrections Sp and SK of the critical couplings are small, 

f,k)(Befieff, K e R )  - f % ) ( P e f f ,  K e f i )  = 0. 

Pent = P e f f  + SP Kc,it = Kefi + S K  (4.2) 

we determine Sp and SK by 

(4.3) 

The second type of phase transition describes the transition from the Coulomb to 
the Higgs phases in the weak-coupling region. In the weak-coupling region there is 
the so-called static Coulomb phase (see § 3) .  The gauge mean value m is close to one 

m = 1 - l / e p  

whereas the Higgs mean value M is trivial ( M  = 0). A gauge transformation of the 
trivial saddle point M leads to :he saddle point itself. The frequency corresponding 
to the gauge degrees of freedom of the gauge field in the loop expansion of the action 
is zero. Therefore, the effective action is invariant under U( 1) gauge transformations. 

Furthermore, there is the region of (6, K )  in which the gauge mean value m and 
the Higgs mean value M are close to one (see equation (3.2)). The frequencies 
corresponding to the gauge degrees of freedom show a typical behaviour. First, for 
increasing couplings ( P ,  K )  they are flat with values close to zero. Then, in the region 
of the critical couplings (Dcri,, K,J a drastic change in the coupling constant dependence 
can be observed. Finally, these frequencies rapidly increase if the couplings become 
larger and  larger (see 5 3) .  Note that the mean values m and M as well as the free 
energy are continuous! Thus, the U(1) gauge symmetry is approximately restored in 
the (p, K )  region characterised by frequencies near to zero. Therefore, we interpret 
this region as a dynamical part of the Coulomb phase. The remaining region of 
coupling constants has non-vanishing frequencies and therefore, the U( 1 )  gauge sym- 
metry is broken. This region is called the Higgs phase. We remark that the K values 
in the static part of the Coulomb phase are less than the K values of the dynamical 
part of this phase for any fixed value p. Using the approximations described in § 3 
(see equations (3.8) and (3.12)) we obtain the relation between the critical couplings of 
the Coulomb to Higgs phase transition given by equation (3.10). 

We have considered the model for Higgs charges q = 1 , 2  and 6 in d = 4 dimensions. 
First we investigate the confinement to Coulomb transition. We obtain a critical 
coupling 

pcri, = 1.52 (4.4) 
independent of the Higgs charge q. This result agrees very well with the Monte Carlo 
prediction by Ranft et a1 (1983). Next we consider the Coulomb to Higgs transition. 
The transition line is given by equation (3.10). Physically the pole q 2 / ( 8  In d )  exists 
only for 

(4.5) q 2 / ( 8  In d )  > pcrit= 1.52. 
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Then a Coulomb phase exists for all values of the Higgs coupling K up to infinity. In 
four dimensions it is easy to see that Higgs charges q 3 5 satisfy equation (4.2). This 
is in agreement with the Monte Carlo calculations (Ranft et al 1983). 

Finally we discuss the confinement to Higgs transition for a Higgs charge q = 1. 
For small enough p the effective free energies of the two phases are given by 

fFdggr - p - ln Io( 2KM2) fiy'= -In Zo(2.K). (4.6) 

For K large enough and M close to one we find for p S  1 that the coupling constant 
dependence of these free energies is approximately the same. Therefore we can regard 
the two phases as analytically connected in this region. By th.is argument the value 
p= 1 is used as the upper limit for the analyiically connected region. Including the 
effective corrections we obtain an end point (p*, K * )  of the confinement to the Higgs 
transition 

(p*, K * )  = (1.125,0.36) (4.7) 

which is in a good agreement with the previous data (Ranft et a1 1983). 

Table 1. The results for all phase transitions calculated for dimension d = 4  and Higgs 
charges q = 1, 2 and 6.  

Confinement- Higgs 
q transition 

~ ~~~ 

Confinement- Coulomb- 
Coulomb Higgs 
transition transition 

1 End-point: p* = 1.125 
1.52 2 pc,,,, 2 p* pc,,, = 1.52 q 2 / ( 8  In d )  = 0.09 
K ~ ~ , ~  = 0.49 -0 .12~cr1c  

2 q 2 / ( 8  In d )  = 0.36 

6 -  pc,,, = 1.52 q 2 / ( 8  In d )  = 3.25 

K,,,, = ~ ~ c r , l ( / ? c r , l  -In 2 ) - '  - 0.16 pc,,, = 1.52 

In table 1 we summarise the results for all phase transitions calculated for dimensions 
d = 4 and Higgs charges q = 1, 2 and 6. Our results for the improved mean-field 
calculation (IMF) compared with the Monte Carlo data (MC) and the results of the 
mean-field tree approximation ( M F )  by Ranft et a1 (1983) are presented in figures 1-3. 
We present the phase transitions in the plane of the couplings p and K for Higgs 
charges q = 1, 2 and 6. Note that our definitions for the couplings differ from those 
in the paper of Ranft et a1 (1983). The chain curves denote the phase transitions 
obtained by MF, the full ones are phase transitions resulting from IMF. The MC data 
are represented by open circles. The bends in the transition lines are due to different 
analytical approximations. These approximations correspond to the two types of phase 
transitions described above. The Coulomb to Higgs transition is described by equation 
(3.2). The strong to weak coupling transitions (confinement to Coulomb phases, 
confinement to Higgs phases) are considered separately. The results are the analytical 
approximations for the phase transition lines shown in table 1. 

In the case of the Higgs charge q = 1 (figure 1) the end point of the confinement 
to Higgs transition in the I M F  calculation is in good agreement with the Monte Carlo 
results. Figure 2 shows the phase structure for a Higgs charge q = 2. Both MF and 
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I Conf 

0 1 

0 

Figure 1. The phase structure of the model for Higgs charge q = 1 and dimension d = 4 in 
the (p, K )  coupling constant plane. 0 0, Monte Carlo (MC): - '  -, mean-field tree 
approximation ( M F )  q = 1; -, improved mean field ( I M F ) .  

I M F  results are in reasonable agreement with the data. In  figure 3 we represent our 
results for the Higgs charge q = 6. Using the improved mean-field calculation we can 
qualitatively reproduce the correct phase structure as predicted by Monte Carlo 
simulations. For increasing values of coupling K the Coulomb phase remains. 

5. Conclusions and summary 

We have found that the improved mean-field calculation including corrections on the 
one-loop level leads to the true phase structure of the lattice Abelian Higgs model as 
found in Monte Carlo studies for all Higgs charges considered. We emphasise that 
to distinguish the phases of the model we use the different behaviour of the saddle-point 

0.51- \ 

Coul. 

01 1 0  2 0  3 0  

P 

Figure 2. The phase structure for Higgs charge q = 2 and dimension d = 4. Symbols as in 
figure 1. 
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K 

Figure 3. The phase structure for Higgs charge q = 6 and dimension d = 4. Symbols as in 
figure 1. 

values and  the effective action under gauge transformation. The confinement phase 
can be characterised by a trivial U( 1) symmetry. This means that a gauge transformation 
of the trivial saddle points ( m  = 0, M = 0) leads to the saddle points themselves. The 
characteristic feature of the Coulomb phase is the non-trivial U ( l )  symmetry. The 
gauge transformed non-trivial saddle points ( m  # 0, M # 0) differ from the original 
ones by a phase, whereas the effective action is invariant under this transformation. 
In the Higgs phase the continuous gauge symmetry is broken so that the effective 
action is not invariant under the U(1) transformation. For the transitions from the 
confinement to the Higgs or Coulomb phases, corresponding to a strong to weak 
coupling transition, at least one saddle point becomes non-trivial. Thus the jumps in 
the mean values of the fields corresponding to a free-energy crossing are used as a 
phase transition criterion. From the mean-field equations it follows that the mean 
values of the fields behave as first derivatives of the free energy. Therefore we can 
interpret the transition with jumps in the mean values as first-order phase transitions. 
In  the weak-coupling region the behaviour of the effective action under gauge transfor- 
mation is connected with the coupling constant dependence of the frequencies in the 
loop expansion. The frequencies corresponding to gauge degrees of freedom are zero 
in the Coulomb phase and increase rapidly approaching the Higgs phase. The drastic 
change in the frequency behaviour corresponds to continuous free energy and con- 
tinuous mean values for gauge and Higgs fields. Therefore, we interpret this transition 
as a second-order one. 

The phase structure obtained is in qualitative agreement with the Monte Carlo 
simulations (Ranft et a1 1983). A qualitative change of the phase structure due  to 
corrections beyond the one-loop level seems to be impossible in view of the magnitude 
of these corrections by Flyvbjerg et a1 (1983) and Flyvbjerg (1984). Therefore, we 
have calculated the corrections to the free energy per link up to one loop. The pure 
saddle-point approximation does not contain all essential terms of the free energy. As 
a consequence the tree approximation does not reproduce the end point in the 
confinement to Higgs transition for the Higgs charge q = 1 as found including the 
one-loop corrections. In the weak-coupling region we use the frequency behaviour 
for the determination of the phase transition lines. We find for a Higgs charge q = 6 
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that with increasing Higgs coupling the Coulomb phase remains in a region of non- 
trivial Higgs mean value ( M  # 0). In the tree approximation one characterises the 
phases by the mean values of the fields so that there is only the phase transition 
criterion explained first. Therefore, one obtains only the static part of the Coulomb 
phase where the Higgs mean value is trivial ( M  = 0). The dynamical part with non- 
trivial Higgs mean value is interpreted as a part of the Higgs phase. Therefore, the 
tree approximation can not reproduce the Coulomb phase for increasing Higgs coupling 
in the case of a Higgs charge q = 6. 
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Appendix 1 

For the static (stat) and dynamical (dyn) part of the Coulomb phase the free energy 
corrections are 

2m - Z1 + Zi m 1 - 5  In(4.rrdm2) -+  In 

1 

- 3  In ( 2  M - Z,  + Z, M 2  

1 1 
D = - ( Zi  - m - Z1 m’) L = - [ 2 m ’ q  - z2( 1 - m ’ q  1 - ( 2, - M - Z, M ‘ )  

2m m 2q  2M 

and in the Higgs phase we find 

2 2 ,  ( Z ,  + q2Z2)( 1 - m2)  - m D =  
2 2 ,  + q’z, 2m 

2q’z2 + 2, z,( 1 - m 2 ¶ )  Z,  - M - Z,M’ 
9’22 + Zl m ’¶ ) 2M 

L = (  - 
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Appendix 2. The ( K  - K$" behaviour of M(K) 

Using the mean-field equations (3.1) we find a Higgs mean value 

M =  I ~ ( Z ~ ) / I O ( Z ~ )  and z 3 = 4 d ~ m 4 M  (A2.1) 

where the In(z3) are modified Bessel functions. In the Higgs phase we expect a Higgs 
mean value M near to one and a very large value for z3. Therefore the modified Bessel 
functions In(z)  can be approximated by (Kasperkovitz 1980) 

(A2.2) 

Using the approximation (A2.2) we find a Higgs mean value 

M = exp( - 1/ 2z3). (A2.3) 

We can expand the exponential function in equation (A2.3) for large enough values 
of z3 and obtain 

M = 1 - 1/22,. (A2.4) 

Equation (A2.4) is consistent with the assumption of a value of M close to one in the 
Higgs phase. The gauge mean value m behaves as 

m s l  (A2.5) 

in both the Coulomb and the Higgs phases. Therefore we can approximate 

z3 = 4 d ~ .  

The Higgs mean value is then given by 

M =  1 - 1 / 8 d ~  (A2.6) 

as in equation (3.2). Note that the approximation (A2.3) works also for z,+O and 
M + O! It shows at least the true qualitative behaviour of M. Due to the gauge mean 
value m being close to one the dependence of the Higgs mean value M on the gauge 
coupling p is not essential for the Coulomb to Higgs phase transition. We regard M 
and z3 as functions of the Higgs coupling K whereas @ is a parameter, 

M = M ( K )  z3 = CM( K ) K  C = 4dmq 1 constant 

= Z3( K )  for fixed d, q. (A2.7) 

The Higgs mean value M ( K )  shows a drastic change in the behaviour going from the 
Higgs to the Coulomb phases. Therefore we can assume that the approximation (A2.3) 
remains valid also for Higgs couplings 

K b K,. 

where K ,  denotes the critical coupling of the phase transition. An expansion of the 
Higgs mean value M ( K  + A K )  given by equation (A2.3) in terms of the small A K  yields 

(A2.8) 
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For AK = K ,  - K and using M (  K , )  = 0 we obtain 

or 

The consideration of equation (A2.7) for z3 yields a Higgs mean value 

(A2.9) 

(A2.10) 
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